a2 United States Patent

Walker

US009262322B2

US 9,262,322 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND APPARATUS FOR STORING A
PROCESSOR ARCHITECTURAL STATE IN
CACHE MEMORY

Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Inventor: William L. Walker, Fort Collins, CO
us)

Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 218 days.

Appl. No.: 14/028,731

Filed: Sep. 17, 2013
Prior Publication Data
US 2015/0081980 A1 Mar. 19, 2015
Int. CI.
GOGF 12/08 (2006.01)
GOGF 11/07 (2006.01)
GOGF 9/44 (2006.01)
U.S. CL
CPC ..o GOG6F 12/0802 (2013.01); GO6F 9/44

(2013.01); GO6F 11/073 (2013.01); GO6F
11/0721 (2013.01); GO6F 12/0877 (2013.01)
Field of Classification Search

CPC ... GO6F 11/07; GOG6F 11/0721; GOG6F 11/073;
GOGF 11/1402; GOGF 11/1438; GOGF 11/1441;
GOGF 12/0808; GOGF 12/0877; GOGF 12/0897,
GOGF 2015/765

See application file for complete search history.

1

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0204760 Al* 10/2003 Youngs 713/320

2007/0157036 Al* 7/2007 Jahagirdar etal. 713/300

2009/0235099 Al* 9/2009 Branover et al. . 713/322

2010/0235579 Al* 9/2010 Bilesetal. 7117125

2012/0210155 Al* 82012 Fleischmann et al. . 713/324

2014/0108734 Al* 4/2014 Kitchinetal. 711/122
OTHER PUBLICATIONS

U.S. Appl. No. 13/653,744, filed Oct. 17,2012, entitled “Method and
Apparatus for Saving Processor Architectural State in Cache Hierar-
chy”.

* cited by examiner
Primary Examiner — Hal Schnee

(57) ABSTRACT

A method includes storing architectural state data associated
with a processing unit in a cache memory using an allocate
without fill mode. A system includes a processing unit, a
cache memory, and a cache controller. The cache controller is
to receive architectural state data associated with the process-
ing unit and store at least a first portion of the architectural
state data in the cache memory using a first fill mode respon-
sive to a first value of a fill mode flag and store at least a
second portion of the architectural state data in the cache
memory using a second fill mode responsive to a second value
of'a fill mode flag, wherein the first fill mode differs from the
second fill mode with respect to whether previous values of
the architectural state data are retrieved prior to storing the
first or second portions in the cache memory.

19 Claims, 10 Drawing Sheets

%00 9008)
N ~[cJofofe]aofoie]o]0}. - .foic]]
" &
9008 .
~~{a[d]d]a]d]d]afc]e]a].. [d]a[q]
£10 2104
N ~{a]ofefo[o]ofole]o]o}- . -[ufc]e]
&
9108 _ . _
~{efelpielelplpiolo]o}{of2]o]
' e
9106 _ }
~{eleleiele]pfeio]oo}. - {oj5]o]
&

9100

~{elelpiplelplpir[r]ris oot dr]e]

U.S. Patent Feb. 16, 2016 Sheet 1 of 10

DPERATING SYSTEM
188

US 9,262,322 B2

APY

CACHE

112

CACHE
17

i
SHARED CACHE

105
PROCESSOR 1 PROCESSOR GRAPHICS
CORE GORE PROCESSING UNIT

DISPLAY UNIT(S)
155

SYSTEM

114

NORTH BRIDGE CONTROLLER
RV I [R —
| CONTROLLER
: 118

POWER MANAGEMENT
CONTROLLER

128

SOUTH

132/)‘

FIG. 1

BRIDGE B

MEMORY
13

COMMUNICATION
INTERFACE

U.S. Patent Feb. 16, 2016 Sheet 2 of 10 US 9,262,322 B2

280

CRLM

CPY CLUSTER1
1

209

CPUS

CPY CLUSTERD
CRUO '

110 110 CPUZ 18

L1 CACHE
f

L1CACHE L1 CACHE

L1 CACHE
2

L2 CACHE
220

L2 CACHE
220

L3 CACHE

PROCESSOR 105

TO SYSTEM
MEMORY

FIG. 2

U.S. Patent Feb. 16, 2016 Sheet 3 of 10

US 9,262,322 B2

CPUCLUSTERD 208

CPU CLUSTERY

280

CRUO 110 CPuUt 11

CPU2

11

CPLU3

L1 CACHE
210

L1 CACHE
210

L1 CACHE
210

=

240 -

L1 CACHE

L2 CACHE
220

220

L3 CACHE
238

PROCESSOR 105

TO SYSTEM
MEMORY

FIG. 3

L2 CACHE

U.S. Patent Feb. 16, 2016 Sheet 4 of 10 US 9,262,322 B2

CPUCLUSTERY 200

L1 CACHE L1 CACHE

218

L1 CACHE
218

12 CACHE

248 ——ASTB :

L3 CACHE

PROCESSOR 105

TG SYSTEM
MEMCRY

FIG. 4

U.S. Patent Feb. 16, 2016 Sheet 5 of 10 US 9,262,322 B2

CPUCLUSTERD 200

CPU oPys

110
L1 CACHE
210

110

L1CACHE
218

CPU CLUSTERT

20

L2 CACHE

L2 CACHE 2‘50

220

ASTZ | |

L3 CACHE

230

PROCESSOR 405

TO SYSTEM
MEMORY

FIG. 5

U.S. Patent Feb. 16, 2016 Sheet 6 of 10 US 9,262,322 B2

CPUCLUSTERS 200

CPUC 118 CPUT 110

L1 CACHE

L1 CACHE
219 4

218

L2 CACHE

L3 CACHE
230

240
{
25.3%—4-{ AST2 1 E ASTS

E

PROCESSOR 105

TOSYSTEM
MEMORY

FIG. 6

U.S. Patent Feb. 16, 2016 Sheet 7 of 10 US 9,262,322 B2

CPUCLUSTERG 280

1 CACHE ¢
210

L

L2 CACHE

1.3 CACHE
230 240

AT

PROCESSOR 10§

TO SYSTEM
MEMORY

FIG. 7

U.S. Patent Feb. 16, 2016 Sheet 8 of 10 US 9,262,322 B2

SET AWF FLAG

810
5 WRITE ARCHITECTURAL STATE LINE & g
TO L1 CACHE
TN 820
< CACHE * e
\, MISs? WRITE CACHE LINE
S) S FR{ THEN WRITE -
{ YES
830
ALLOCATE -
WITHOUT FILL THEN WRITE
........................... STATE SAVE d
“INTERRUPTED?
YES
/840
CLEAR AWF FLAG 900

U.S. Patent Feb. 16, 2016 Sheet 9 of 10 US 9,262,322 B2

900 900A
N ~~{010{0{0[0[0]0}0]0]0]~.[0]0}0]
&
9008

~{d]d]a[d[d[da]a[¢[e]d]. - -[d]d]a

910

10A
Sa ~{o]o[o]o]o]o]e]o]o]0]. . [o]0]0]

4

9108

‘\\1p]plppppp0005.,000

910C M
~~{piplp|p|plp|p|0]0{0].[0]0]0]

910D v
“ipiplplpipiplp i) rfe]r]

U.S. Patent Feb. 16, 2016 Sheet 10 of 10 US 9,262,322 B2

] GENERATE FUNCTIONAL SPECIFICATION

¥
---------- GENERATE HARDWARE DESCRIPTION CORE

¥
] GENERATE NETLISTS

¥
] GENERATE PHYSICAL LAYOUT CCDE

k4

paa— FABRICATE JC DEVICE

—~—
L)
<o
o
RIS CRCRITITIITIER. RO | WISSRIIGISITITT. RO’

US 9,262,322 B2

1
METHOD AND APPARATUS FOR STORING A
PROCESSOR ARCHITECTURAL STATE IN
CACHE MEMORY

BACKGROUND

1. Field of the Disclosure

The disclosed subject matter relates generally to electronic
devices having multiple power states and, more particularly,
to amethod and apparatus for storing an architectural state of
a processor in cache memory.

2. Description of the Related Art

Some processors may include multiple central processing
unit (CPU) cores and one or more secondary processor cores,
such as a graphics processing unit (GPU) cores. To save
system power, one or more of these cores can be powered off
when not being utilized. For example, a processor core may
be powered down when the processing load is light. When the
load subsequently increases and the system again requires the
use of that processor core, it will power up the processor core
and resume executing instructions on that processor core.
When a processor core is powered off, the architectural state
of that processor core is lost. When the processor core is
powered up again, it will require that architectural state be
re-established to continue executing instructions. To avoid
running lengthy boot code to restore the processor core back
to an initialized state, a processor core may save its architec-
tural state before being powered off and then restore that
architectural state when being powered up. The processor
core stores the architectural state in a location that will retain
power across the processor core powered-down period.

This process of saving and restoring architectural state is
time-critical for the system. Any time wasted before going
into the powered-down state is time that the core could have
been already powered down. Reducing the time required for
an architectural state save results in increased power savings.
Also, any time wasted while restoring the architectural state
on power-up adds to the latency in re-establishing the opera-
tional state of the processor core, thereby reducing system
performance.

The memory location where the architectural state is saved
while the processor core is in a low power state must be
secure. If a hardware or software entity could maliciously
corrupt this architectural state when the processor coreisina
low power state, the processor core would restore a corrupted
state and could be exposed to a security risk. Conventional
processors save the architectural state to various locations to
facilitate a lower power state. For example, the processor may
save the architectural state to a dedicated static random access
memory (“SRAM?”) array or to the system memory ((e.g.,
dynamic random access memory (“DRAM”)). The use of
dedicated SRAM allows faster save and restore times and
improved security, but requires additional hardware, resulting
in increased cost. Saving the architectural state to system
memory uses existing memory infrastructure, but increases
save and restore times and decreases security as compared to
the use of dedicated SRAM.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

FIG. 1 is a block diagram of'a computer system configured
to store architectural processor states in a cache memory, in
accordance with some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a simplified diagram of a memory hierarchy
implemented by the system of FIG. 1, in accordance with
some embodiments.

FIGS. 3-7 illustrate the use of the cache memory to store
processor architectural states during power down events, in
accordance with some embodiments.

FIG. 8 is a flow diagram of method illustrating how archi-
tectural state data is stored by a processor core and an L1
cache in the memory hierarchy of FIG. 2, in accordance with
some embodiments.

FIG. 9 is a diagram illustrating the architectural state data
written during the architectural state storage operation of
FIG. 9, in accordance with some embodiments.

FIG. 10 is a flow diagram illustrating a method for design-
ing and fabricating an integrated circuit device implementing
atleast a portion of a component of a processor, in accordance
with some embodiments.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

FIGS. 1-10 illustrate example techniques for saving an
architectural state of a processor core in a cache memory prior
to powering down the processor core so that the architectural
state may be recovered when power is restored to the proces-
sor core. During the architectural state save, some or all of the
cache lines targeted by the architectural state data may not be
present in the cache. In a conventional cache write, a line not
in the cache must first be retrieved from the memory sub-
system and loaded into the cache prior to allocating the cache
line and allowing the data being written by the processor core
(this process referred to herein as a “cache line fill”). In the
case of architectural state data, the previous values of the
cache lines are unimportant, as they will be overwritten. To
reduce the time associated with the storage of the architec-
tural state data, the cache may operate in a mode that sup-
presses the cache line fill and instead writes the cache line
with zeros, or some other predetermined value, prior to allo-
cating the cache line, a mode referred to herein as an “allocate
without fill” mode. In a case where a cache line write is
interrupted during the storage of the architectural state data,
the processor core suspends the allocate without fill mode for
the remainder of the architectural state storage operation, and
instead employs a conventional allocate with fill mode, where
the previous values of the targeted cache lines are retrieved
from the memory hierarchy prior to allowing further archi-
tectural state data to be stored, thereby ensuring that any
partial data written to the cache line prior to the interruption is
preserved. Using the allocate without fill mode reduces the
time required to implement the storage of the architectural
state data, thereby increasing the length of the time interval
that the processing unit 110, 115 can reside in a powered-
down state. Such an increased time spent in a powered-down
state can, in certain circumstances, result in systems (e.g.,
battery powered devices such as laptops, tablets, handsets and
other mobile devices) having increased battery longevity.

FIG. 1 illustrates a computer system 100 including an
accelerated processing unit (“APU”’) 105 that saves architec-
tural state data in a cache memory of the memory hierarchy in
accordance with some embodiments. The APU 105 includes
one or more processor cores 110 and their associated caches,
such as a Level 1 (“L1”) cache 112 and a shared Level 2
(“L2”) cache 114, a graphics processing unit (“GPU”) 115
and its associated cache 117, at least one cache controller 119,
a power management controller 120, a north bridge (“NB”)

US 9,262,322 B2

3

controller 125. The processor cores 110 and GPU 115 may be
collectively referred to as processing units 110, 115. The
architectural state data for processing unit 110, 115 may
include, for example, the values stored in the registers and
memory of the processing unit 110, 115. The system 100 also
includes a south bridge (“SB”’) 130, and system memory 135
(e.g., DRAM). The NB controller 125 provides an interface to
the south bridge 130 and to the system memory 135. To the
extent certain exemplary aspects of the processing units 110,
115 or one or more cache memories 112, 114, 117 are not
described herein, such exemplary aspects may or may not be
included in various embodiments without limiting the spirit
and scope ofthe embodiments of the present subject matter as
would be understood by one of skill in the art. In some
embodiments, the computer system 100 may interface with
one or more peripheral devices, input devices, output devices,
and/or display units via the south bridge 130. The operation of
the system 100 is generally controlled by a software operating
system 165. In various embodiments, the computer system
100 may be a personal computer, a laptop computer, a hand-
held computer, a tablet computer, a mobile device, a tele-
phone, a personal data assistant (“PDA”), a server, a main-
frame, a work terminal, a music player, a smart television, a
game console, and the like.

The power management controller 120 may be a circuit or
logic configured to perform one or more functions in support
of the computer system 100. As illustrated in FIG. 1, the
power management controller 120 is implemented in the NB
controller 125, which may include a circuit (or sub-circuit)
configured to perform power management control as one of
the functions of the overall functionality of NB controller
125. In some embodiments, the south bridge 130 controls a
plurality of voltage rails 132 for providing power to various
portions of the system 100. The separate voltage rails 132
allow some elements to be placed into a sleep state while
others remain powered. For example, one or more of the
processor cores 110 may be placed into a sleep state, where
they may save their architectural states in their respective
caches 112, 114, 117 prior to powering down.

In some embodiments, the circuit represented by the NB
controller 125 is implemented as a distributed circuit, in
which respective portions of the distributed circuit are con-
figured in one or more of the elements of the system 100, such
as the processor cores 110, but operating on separate voltage
rails 132, that is, using a different power supply than the
section or sections of the processor cores 110 functionally
distinct from the portion or portions of the distributed circuit.
The separate voltage rails 132 may thereby enable each
respective portion of the distributed circuit to perform its
functions even when the rest of the processor core 110 or
other element of the system 100 is in a reduced power state.
This power independence enables embodiments that feature a
distributed circuit, distributed controller, or distributed con-
trol circuit performing at least some or all of the functions
performed by NB controller 125 shown in FIG. 1. In some
embodiments, the power management controller 120 controls
the power states of the various processing units 110, 115 in
the computer system 100.

Instructions of different software programs are typically
stored on a relatively large but slow non-volatile storage unit
(e.g., internal or external disk drive unit). When a user selects
one of the programs for execution, the instructions of the
selected program are copied into the system memory 135, and
the APU 105 obtains the instructions of the selected program
from the system memory 135. Some portions of the data are
also loaded into L1 cache memories 112 of one or more of the
processor cores 110, the cache memory 117 of the GPU 115,

10

15

20

25

30

35

40

45

50

55

60

65

4

and/or the shared .2 cache 114. As described in greater detail
below, the processor cores 110 and/or the GPU 115 may
employ a hierarchy of cache memory elements and may
include additional cache levels, such as a level 3 (1.3) cache.

The caches 112, 114, 117 are smaller and faster memories
(i.e., as compared to the system memory 135) that store
copies of instructions and/or data that are expected to be used
relatively frequently during normal operation. Instructions or
data that are expected to be used by a processing unit 110, 115
during normal operation are moved from the relatively large
and slow system memory 135 into the caches 112, 114, 117
by the cache controller 119. Although the cache controller
119 is illustrated as a single unit, in some embodiments, the
cache controller 119 may be distributed to provide separate
cache management for each of the caches 112, 114, 117.
When a processing unit 110, 115 needs to read or write a
location in the system memory 135 for a conventional
memory operation, the cache controller 119 first checks to see
whether the desired memory location is included in one of the
caches 112, 114, 117. If this location is included in a cache
112,114, 117 (i.e., a cache hit), then the processing unit 110,
115 can perform the read or write operation on the copy in the
cache 112, 114, 117. If this location is not included in the
cache 112, 114, 117 (i.e., a cache miss), then the processing
unit 110, 115 needs to access the information stored in the
system memory 135 and, in some cases, the information may
be copied from the system memory 135 cache controller 119
and added to the cache 112, 114, 117. Proper configuration
and operation of the cache 112, 114, 117 can reduce the
latency of memory accesses.

As described in greater detail below with respect to FIGS.
8 and 9, in cases where a processing unit 110, 115 is storing
architectural state data in its associated cache 112, 117, the
cache controller 119 may operate in an allocate without fill
mode to reduce the time required for the store operation. In
this manner, the data need not be filled from the .2 cache 114
or a lower level of the memory hierarchy to facilitate the
storage of the architectural state data. In the event, the storage
of the architectural state data is interrupted after a particular
cache line is partially written, the cache controller 119 may
transition to a conventional allocate with fill mode to preserve
the partially written architectural state data.

FIG. 2 is a block diagram illustrating a memory hierarchy
employed by the APU 105 in accordance with some embodi-
ments. The APU 105 employs a hierarchical cache that
divides the cache into three levels known as L1, L2, and L3.
For ease of illustration, the GPU 115 and its cache 117 are not
illustrated in the memory hierarchy, but the techniques
described herein may also be applied to the GPU 115. The
processor cores 110 are grouped into CPU clusters 200. Each
processor core 110 has its own [.1 cache 210, each cluster 200
has an associated L2 cache 220, and the clusters 200 share an
L3 cache 230. The system memory 135 is in the memory
hierarchy downstream of the [.3 cache 230. In the memory
hierarchy, the speed generally decreases with level, but the
size generally increases. For example, the .1 cache 210 is
typically smaller and faster than the 1.2 cache 220, which is
smaller and faster than the [.3 cache 230. The largest level in
the memory hierarchy is the system memory 135, which is
also slower than the cache memories 210, 220, 230. A par-
ticular processor core 110 first attempts to locate needed
memory locations in the L1 cache and then proceeds to look
successively in the [.2 cache, the L3 cache, and finally the
system memory 135 when it is unable to find the memory
location in the upper levels of the cache. The cache controller
119 may be a centralized unit that manages all of the cache
memories in the memory hierarchy, or it may be distributed.

US 9,262,322 B2

5

For example, each cache 210, 220, 230 may have its own
cache controller 119, or some levels may share a common
cache controller 119.

In some cases, the [.1 cache 210 may be subdivided into a
separate [L1-1 instruction cache for storing instructions and an
L1-D data cache for storing data. The L1-I cache can be
placed near entities that require more frequent access to
instructions than data, whereas the [.1-D cache can be placed
closer to entities that require more frequent access to data than
instructions. The .2 cache 220 is typically associated with
boththe [L1-Iand L.1-D caches and can store copies of instruc-
tions or data retrieved from the L3 cache 230 and the system
memory 135. Frequently used instructions are copied from
the L2 cache into the [.1-1 cache and frequently used data can
be copied from the [.2 cache into the [.1-D cache. The .2 and
L3 caches 220,230 are may be referred to as unified caches in
that they store both instructions and data.

In some embodiments, the power management controller
120 controls the power states of the processor cores 110.
When a particular processor core 110 is placed in a powered-
down state (e.g., a C6 state), the core processor 110 saves its
architectural state in its .1 cache 210 responsive to a power
down signal from the power management controller 120. In
embodiments where the L1 cache 210 includes an L1-I cache
and an L1-D cache, the [.1-D cache may be used for storing
the architectural state. In this manner, the system 100 uses the
cache memories 210, 220, 230 to facilitate the architectural
state save/restore for power events. When the processor core
110 is powered down, the cache contents are automatically
flushed to the next lower level in the memory hierarchy by the
cache controller 119. In some embodiments, each core has a
designated memory location for storing its architectural state.
When the particular processor core 110 receives a power
restore instruction or signal to exit from the sleep state, it
retrieves its architectural state based on the designated
memory location. Based on the designated memory location,
the memory hierarchy will locate the architectural state data
in the lowest level that the data was flushed down to in
response to power down events. If the power down event is
canceled by the power management controller 120 prior to
flushing the L1 cache 210, the architectural state may be
retrieved therefrom.

FIGS. 3-7 illustrate the use of cache memories in the
memory hierarchy to store processor architectural states dur-
ing power down events, in accordance with some embodi-
ments. As shown in FIG. 3, the power management controller
120 instructs CPU3 to transition to a low power state. CPU3
stores its architectural state 240 (AST3) in its L1 cache 210.
The technique used by the processor cores 110 to save their
architectural states in the [.1 cache 210 is described in greater
detail below in reference to FIG. 8. In general, the cache
controller 119 employs an allocate without fill mode to reduce
latency for the architectural state save, and transitions to a fill
mode if the architectural state save is interrupted. When
CPU3 is powered down, its [.1 cache 210 is flushed by the
cache controller 119 to the L2 cache 220 for the CPU cluster
1, as shown in F1G. 4. The powering down of CPU3 is denoted
by the gray shading.

As shown in FIG. 5, CPU2 is also instructed to power down
by the power management controller 120, and CPU2 stores its
architectural state 250 (AST2) in its L1 cache 210 (not
shown). CPU2 powers down and its architectural state 250 is
flushed by the cache controller 119 to the [.2 cache 220. Since
both processor cores 110 in CPU cluster 1 are powered down,
the whole cluster may be powered down, which flushes the 1.2
cache 220 to the L3 cache 230, thereby relocating the saved
architectural states 240, 250 as shown in FIG. 6.

10

15

20

25

30

35

40

45

50

55

60

65

6

As shown in FIG. 7, CPU1 is powered down by the power
management controller 120. CPU1 saves its architectural
state 260 (ASTATEL]) to its .1 cache 210 (not shown) and
then the cache controller 119 flushes the architectural state
260 to the 1.2 cache 220. In this current state, only CPUO is
running, which is a common scenario for CPU systems with
only one executing process.

If CPU1 were to receive a power restore instruction or
signal to cause it to exit the sleep state, it would to fetch its
architectural state from the CPU Cluster 0 L2 cache 220. If
CPU2 or CPU3 were to power up, they would fetch their
respective states from the L3 cache 230. Because the proces-
sor cores 110 use designated memory locations for their
respective architectural state data, the restored processor core
110 need only request the data from the designated location.
The cache controller 119 will automatically locate the cache
level in which the data resides. For example, if the architec-
tural state data is stored in the [.3 cache 230, the processor
core 110 being restored will get misses in the L1 cache 210
and the [.2 cache 220, and eventually get a hit in the L3 cache
230. The memory hierarchy logic will identify the location of
the architectural state data and forward it to the processor core
110 being restored.

If all processor cores 110 were to power down, then the [.3
cache 230 would be flushed to system memory 135 and the
entire APU 105 could power down. The cache controller 119
would locate the architectural state data in the system
memory 135 during a power restore following misses in the
higher levels of the memory hierarchy.

An example architectural state save process is described in
reference to FIGS. 8 and 9. FIG. 8 is a flow diagram of method
800 illustrating how architectural state data is stored by a
processor core 110 and the .1 cache 210 in the memory
hierarchy of FIG. 2 in accordance with some embodiments.
FIG. 9 is a diagram illustrating the data written during the
architectural state save process of FIG. 8 in accordance with
some embodiments. The cache controller 119 employs an
allocate without fill (“AWEF”’) flag to determine which allocate
mode to use for saving the architectural state data. The AWF
flag is asserted when an allocate without fill mode is used and
de-asserted when a conventional allocate with fill mode in
used (i.e., where the previous values of the data in the cache
line are retrieved from the memory hierarchy prior to allocat-
ing the cache line to allow writing of the current architectural
state). The conventional fill mode is used in cases where an
architectural state save is interrupted and the memory hierar-
chy may already store portions of the current architectural
state. The cache controller 119 distinguishes between an
architectural state write and a different write using the address
of'the write. The architectural state data is stored in a specific
reserved address range. When a write request reaches the
cache controller 119 from the processor core 110, its address
is compared against that reserved range. If the address
matches, the cache controller 119 consults the AWF flag, and
if it is set, fills the corresponding cache line with zeroes (or
other predetermined value) instead of reading the pervious
value of the cache line from memory. If the address does not
match the reserved address range, then the cache controller
119 treats the write request as a normal write and fills the
cache line by reading the previous value of the cache line from
the memory hierarchy.

In method block 805, an allocate without fill (“AWF”’) flag
is set by the cache controller 119. The AWF flag may be set to
enable the AWF mode after a reset, a cache flush, or upon
exiting a sleep state. In these cases, the previous value of the
architectural state data is irrelevant because the current archi-
tectural state is stored in the processor core 110 and would be

US 9,262,322 B2

7

overwritten by a subsequent architectural state save. In
method block 810, the processor writes an architectural state
line to the L1 cache 210. The process illustrated in method
block 810 assumes that the cache controller 119 has already
compared the write request to the reserved address range and
has identified the write as an architectural state write. The
process of method block 810 is repeated until the entire archi-
tectural state is written. In method block 815, the cache con-
troller 119 checks the L1 cache 210 to determine if the current
line is resident therein. If the cache line is present in method
block 815, indicated by a cache hit, the cache line is written in
method block 820. If the cache line is not present in method
block 815, indicated by a cache miss, the AWF flag is checked
in method block 825. If the AWF mode flag is set, the cache
controller 119 implements an AWF operation and a write of
the data provided by the processor core 110 in method block
830.

FIG. 9 illustrates the data operations for a cache line 900
during an AWF operation and subsequent write. Letter suf-
fixes on the cache line reference numeral denote different
versions of the cache line 900 throughout the write process.
During the AWF operation, the cache line 900A is first written
with zeros (or some other predetermined value). Subse-
quently, the cache controller 119 stores the architectural state
data, “d,” in the cache line 900B. Using the AWF mode
reduces latency as the data need not be fetched from the
memory hierarchy. The cache line 900B shows a full write of
the cache line 900 without interruption. Returning to FIG. 8,
in method block 835 it is determined if the state save was
interrupted. Since the cache line 900 was written without
interruption in method block 830 the method returns to
method block 810.

The method return to block 810 for a subsequent cache line
910. Again, letter suffixes on the cache line reference numeral
denote different versions of the cache line 910 throughout the
write process. Assume the cache line 910 misses in method
block 815. The fill mode flag is still set, in method block 825,
so an AWF operation and write is commenced in method
block 830. During the AWF operation, the cache line 910A is
first written with zeros. Subsequently, the cache controller
119 writes the architectural state data, “p,” for the current
cache line 910B. However, in this example, the cache line
write is interrupted, as indicated in cache line 910B by the line
being partially filled with data, “p” and partially filled with
zeros. For example, the cache line 910 may be the subject of
a probe request by another coherent device, such as another
processor core 110 or a coherent I/O device (not shown),
which would interrupt the write and evict the cache line 910B
from the L1 cache 210. In some embodiments, the architec-
tural state may be saved by software (e.g., the operating
system 165), rather than by microcode in the processor core
110. In such cases, a software interrupt may interrupt the
architectural state save. While the interrupt is being handled,
the partially-written cache line 910B could “age out” of the
L1 cache 210 because the [.1 cache 210 is being used to store
other data (e.g., by the interrupt handler). Evicting the cache
line 910B causes it to be written to a lower level in the
memory hierarchy. The cache line 910B could be written to
the 1.2 cache 220, the L3 cache 230, or the system memory
135. Regardless of the cause for the eviction of the cache line
910B, if the processor core 110 were to resume writing the
architectural state data with the cache controller 119 imple-
menting an AWF mode, the cache controller 119 would fill the
cache line with zeros prior to continuing with the architec-
tural state save. In such a case, the partial data, “p,” written in
the cache line 910B would be lost.

30

40

45

55

8

To avoid losing the partial data, the cache controller termi-
nates AWF mode if an architectural state save is interrupted.
Responsive to an interruption of the write identified in
method block 835, the AWF flag is cleared in method block
840. In some embodiments, the interruption is detected when
the cache controller 119 recognizes an incoming probe whose
address falls in the reserved address range for architectural
state saves and by identifies an outgoing cache line eviction
whose address falls in the reserved address range. The method
returns to method block 810 to continue with the architectural
state save. At a subsequent time, when the partially written
cache line 910 is released, the processor core 110 will attempt
to continue writing to the cache line 910 again. Due to the
previous eviction of the cache line 910B, a cache miss is
encountered in method block 815. In method block 825, the
AWTF flag is not set, so the cache controller 119 implements a
conventional fill and write in method block 845 to retrieve the
cache line 910C from the memory hierarchy followed by a
write of the cache line 910D, which finishes the rest of the
write with the remainder data, “r”.

In some embodiments, the AWF flag remains cleared for
the remainder of the architectural state save, thereby avoiding
the need to track the completion status of the architectural
state save by cache line. The AWF flag may be set again in
method block 805 after a reset, a cache flush, or upon exiting
a sleep state.

For a processor system with a cache memory in the
memory hierarchy, using the cache memory to save the archi-
tectural state has the benefit of low latency, since the archi-
tectural state data is only flushed as far down in the memory
hierarchy as needed to support the power state. This approach
also uses existing cache flushing infrastructure to save data to
the caches and subsequently flush the data from one cache to
the next, so the design complexity is low. The use of allocate
without fill mode reduces the time required to implement an
architectural state save, thereby increasing the time interval
that the processor core may be powered down and saving
power.

In some embodiments, at least some of the functionality
described above may be implemented by one or more proces-
sors executing one or more software programs tangibly stored
ata computer readable medium, and whereby the one or more
software programs comprise instructions that, when
executed, manipulate the one or more processors to perform
one or more functions of the processing system described
above. Further, in some embodiments, serial data interfaces
described above are implemented with one or more integrated
circuit (IC) devices (also referred to as integrated circuit
chips). Electronic design automation (EDA) and computer
aided design (CAD) software tools may be used in the design
and fabrication of these IC devices. These design tools typi-
cally are represented as one or more software programs. The
one or more software programs comprise code executable by
a computer system to manipulate the computer system to
operate on code representative of circuitry of one or more IC
devices so as to perform at least a portion of a process to
design or adapt a manufacturing system to fabricate the cir-
cuitry. This code can include instructions, data, or a combi-
nation of instructions and data. The software instructions
representing a design tool or fabrication tool typically are
stored in a computer readable storage medium accessible to
the computing system. Likewise, the code representative of
one or more phases of the design or fabrication of an IC device
may be stored in and accessed from the same computer read-
able storage medium or a different computer readable storage
medium.

US 9,262,322 B2

9

A computer readable storage medium may include any
storage medium, or combination of storage media, accessible
by a computer system during use to provide instructions
and/or data to the computer system. Such storage media can
include, but are not limited to, optical media (e.g., compact
disc (CD), digital versatile disc (DVD), or Blu-Ray disc),
magnetic media (e.g., floppy disc, magnetic tape, or magnetic
hard drive), volatile memory (e.g., random access memory
(RAM) or cache), non-volatile memory (e.g., read-only
memory (ROM) or Flash memory), or microelectromechani-
cal systems (MEMS)-based storage media. The computer
readable storage medium may be embedded in the computing
system (e.g., system RAM or ROM), fixedly attached to the
computing system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or
Universal Serial Bus (USB)-based Flash memory), or
coupled to the computer system via a wired or wireless net-
work (e.g., network accessible storage (NAS)).

FIG. 10 is a flow diagram illustrating an example method
1000 for the design and fabrication of an IC device imple-
menting one or more aspects in accordance with some
embodiments. As noted above, the code generated for each of
the following processes is stored or otherwise embodied in
computer readable storage media for access and use by the
corresponding design tool or fabrication tool.

Atblock 1002 a functional specification for the IC device is
generated. The functional specification (often referred to as a
micro architecture specification (MAS)) may be represented
by any of a variety of programming languages or modeling
languages, including C, C++, SystemC, Simulink, or MAT-
LAB.

At block 1004, the functional specification is used to gen-
erate hardware description code representative of the hard-
ware of the IC device. In some embodiments, the hardware
description code is represented using at least one Hardware
Description Language (HDL), which comprises any of a vari-
ety of computer languages, specification languages, or mod-
eling languages for the formal description and design of the
circuits of the IC device. The generated HDL code typically
represents the operation of the circuits of the IC device, the
design and organization of the circuits, and tests to verify
correct operation of the IC device through simulation.
Examples of HDL include Analog HDL (AHDL), Verilog
HDL, SystemVerilog HDL, and VHDL. For IC devices
implementing synchronized digital circuits, the hardware
descriptor code may include register transfer level (RTL)
code to provide an abstract representation of the operations of
the synchronous digital circuits. For other types of circuitry,
the hardware descriptor code may include behavior-level
code to provide an abstract representation of the circuitry’s
operation. The HDL model represented by the hardware
description code typically is subjected to one or more rounds
of simulation and debugging to pass design verification.

After veritying the design represented by the hardware
description code, at block 1006 a synthesis tool is used to
synthesize the hardware description code to generate code
representing or defining an initial physical implementation of
the circuitry of the IC device. In some embodiments, the
synthesis tool generates one or more netlists comprising cir-
cuit device instances (e.g., gates, transistors, resistors, capaci-
tors, inductors, diodes, etc.) and the nets, or connections,
between the circuit device instances. Alternatively, all or a
portion of a netlist can be generated manually without the use
of'a synthesis tool. As with the hardware description code, the
netlists may be subjected to one or more test and verification
processes before a final set of one or more netlists is gener-
ated.

10

15

20

25

30

35

40

45

50

55

60

65

10

Alternatively, a schematic editor tool can be used to draft a
schematic of circuitry of the IC device and a schematic cap-
ture tool then may be used to capture the resulting circuit
diagram and to generate one or more netlists (stored on a
computer readable media) representing the components and
connectivity of the circuit diagram. The captured circuit dia-
gram may then be subjected to one or more rounds of simu-
lation for testing and verification.

At block 1008, one or more EDA tools use the netlists
produced at block 1006 to generate code representing the
physical layout of the circuitry of the IC device. This process
caninclude, for example, a placement tool using the netlists to
determine or fix the location of each element of the circuitry
of the IC device. Further, a routing tool builds on the place-
ment process to add and route the wires needed to connect the
circuit elements in accordance with the netlist(s). The result-
ing code represents a three-dimensional model of the IC
device. The code may be represented in a database file format,
such as, for example, the Graphic Database System II (GD-
SII) format. Data in this format typically represents geometric
shapes, text labels, and other information about the circuit
layout in hierarchical form.

At block 1010, the physical layout code (e.g., GDSII code)
is provided to a manufacturing facility, which uses the physi-
cal layout code to configure or otherwise adapt fabrication
tools of the manufacturing facility (e.g., through mask works)
to fabricate the IC device. That is, the physical layout code
may be programmed into one or more computer systems,
which may then control, in whole or part, the operation of the
tools of the manufacturing facility or the manufacturing
operations performed therein.

As disclosed herein, in some embodiments a method
includes storing architectural state data associated with a
processing unit in a cache memory using an allocate without
fill mode.

As disclosed herein, in some embodiments a method
includes storing architectural state data associated with a
processing unit in a cache memory without retrieving a pre-
vious version of the architectural state data from a memory
hierarchy into the cache memory.

As disclosed herein, in some embodiments a system
includes a processing unit, a cache memory, and a cache
controller. The cache controller is to receive architectural
state data associated with the processing unit and store at least
a first portion of the architectural state data in the cache
memory using a first fill mode responsive to a first value of a
fill mode flag and store at least a second portion of the archi-
tectural state data in the cache memory using a second fill
mode responsive to a second value of a fill mode flag. The first
fill mode differs from the second fill mode with respect to
whether previous values of the architectural state data are
retrieved prior to storing the first or second portions in the
cache memory.

As disclosed herein, in some embodiments a non-transi-
tory computer readable media stores code to adapt at least one
computer system to perform a portion of a process to fabricate
at least part of a system. The system includes a processing
unit, a cache memory, and a cache controller. The cache
controller is to receive architectural state data associated with
the processing unit and store at least a first portion of the
architectural state data in the cache memory using a first mode
responsive to a first value of a fill mode flag and store at least
a second portion of the architectural state data in the cache
memory using a second mode responsive to a second value of
a fill mode flag. The first fill mode differs from the second fill
mode with respect to whether or not previous values of the

US 9,262,322 B2

11

architectural state data are retrieved prior to storing the first or
second portions in the cache memory.

Note that not all of the activities or elements described
above in the general description are required, that a portion of
a specific activity or device may not be required, and that one
or more further activities may be performed, or elements
included, in addition to those described. Still further, the order
in which activities are listed are not necessarily the order in
which they are performed.

Also, the concepts have been described with reference to
specific embodiments. However, one of ordinary skill in the
art appreciates that various modifications and changes can be
made without departing from the scope of the present disclo-
sure as set forth in the claims below. Accordingly, the speci-
fication and figures are to be regarded in an illustrative rather
than a restrictive sense, and all such modifications are
intended to be included within the scope of the present dis-
closure.

Benefits, other advantages, and solutions to problems have
been described above with regard to specific embodiments.
However, the benefits, advantages, solutions to problems, and
any feature(s) that may cause any benefit, advantage, or solu-
tion to occur or become more pronounced are not to be con-
strued as a critical, required, or essential feature of any or all
the claims.

What is claimed is:

1. A method comprising:

storing architectural state data associated with a processing

unit in a cache memory using an allocate without fill
mode;

identifying an interruption in the storing of the architec-

tural state data; and

resuming the storing of the architectural state data in the

cache memory using an allocate with fill mode.

2. The method of claim 1, wherein storing the architectural
state data using the allocate without fill mode comprises:

allocating a first cache line in the cache memory for receiv-

ing at least a first portion of the architectural state data;
initializing the first cache line to a predetermined value;
and

storing the first portion of the architectural state data in the

first cache line.

3. The method of claim 2, wherein storing the architectural
state data using the allocate with fill mode comprises:

allocating a second cache line in the cache memory for

receiving at least a second portion of the architectural
state data;

retrieving previous values of the second cache line from a

memory hierarchy; and

storing the second portion of the architectural state data in

the second cache line.

4. The method of claim 1, wherein identifying the inter-
ruption further comprises identifying the interruption respon-
sive to evicting a cache line from the cache memory storing
data within a reserved address range for the architectural state
data.

5. The method of claim 1, further comprising:

flushing the architectural state data from the cache memory

to a lower level of a memory hierarchy;

placing the processing unit into a sleep state;

exiting the processing unit from the sleep state;

retrieving the architectural state data from the memory

hierarchy; and

restoring an architectural state of the processing unit with

the retrieved architectural state data.

10

15

20

25

30

35

40

45

50

55

60

65

12

6. A method comprising:

storing architectural state data associated with a processing
unit in a cache memory without retrieving a previous
version of the architectural state data from a memory
hierarchy into the cache memory;
identifying an interruption in the storing of the architec-
tural state data after a first portion of the architectural
state data has been stored in the cache memory; and

resuming the storing of a remainder portion of the archi-
tectural state data in the cache memory by retrieving the
first portion from the memory hierarchy into the cache
memory and storing the remainder portion in the cache
memory after retrieving the first portion.

7. The method of claim 6, wherein identifying the inter-
ruption further comprises identifying the interruption respon-
sive to evicting a cache line from the cache memory storing
data within a reserved address range for the architectural state
data.

8. The method of claim 6, wherein storing the architectural
state data comprises:

allocating a first cache line in the cache memory for receiv-

ing the first portion of the architectural state data;
initializing the first cache line to a predetermined value;
and

storing the first portion of the architectural state data in the

first cache line.

9. The method of claim 8, wherein storing the remainder
portion comprises:

allocating a second cache line in the cache memory for

receiving at least a second portion of the remainder
portion;

retrieving previous values of the second cache line from the

memory hierarchy; and

storing the second portion in the second cache line.

10. The method of claim 6, further comprising:

flushing the architectural state data from the cache memory

to a lower level of the memory hierarchy;

placing the processing unit into a sleep state;

exiting the processing unit from the sleep state;

retrieving the architectural state data from the memory

hierarchy; and

restoring an architectural state of the processing unit with

the retrieved architectural state data.

11. A system comprising:

a processing unit;

a cache memory; and

a cache controller to receive architectural state data asso-

ciated with the processing unit and store at least a first
portion of the architectural state data in the cache
memory using a first fill mode responsive to a first value
of a fill mode flag and store at least a second portion of
the architectural state data in the cache memory using a
second fill mode responsive to a second value of a fill
mode flag, wherein the first fill mode differs from the
second fill mode with respect to whether previous values
of the architectural state data are retrieved prior to stor-
ing the first or second portions in the cache memory.

12. The system of claim 11, wherein the first mode com-
prises an allocate without fill mode and the second mode
comprises an allocate with fill mode.

13. The system of claim 12, wherein the cache controller
sets the fill mode flag to the second value responsive to iden-
tifying an interruption in the storing of the architectural state
data.

14. The system of claim 13, wherein the cache controller
identifies the interruption responsive to evicting a cache line

US 9,262,322 B2

13

from the cache memory storing data within a reserved address
range for the architectural state data.

15. The system of claim 13, wherein the cache controller
sets the fill mode flag to the first value responsive to flushing
the cache memory.

16. The system of claim 12, wherein the cache controller
sets the fill mode flag to the first value responsive to the
processing unit exiting a sleep state.

17. The system of claim 14, wherein while operating in the
first mode, the cache controller is to:

allocate a first cache line in the cache memory for receiving

the first portion;

initialize the first cache line to a predetermined value; and

store the first portion in the first cache line.

18. The system of claim 17, wherein while operating in the
second mode, the cache controller is to:

allocate a second cache line in the cache memory for

receiving the second portion;

14

retrieve previous values of the second cache line from a
memory hierarchy associated with the processing unit;
and

store the second portion in the second cache line.

19. The system of claim 11, further comprising a power
management controller to:

place the processing unit into a sleep state, wherein the
cache controller is to flush the architectural state data
from the cache memory to a lower level of a memory
hierarchy associated with the processing unit prior to the
processing unit entering the sleep state; and

exit the processing unit from the sleep state, wherein the
cache controller is to retrieve the architectural state data
from the memory hierarchy and the processing unit is to
load the retrieved architectural state data.

#* #* #* #* #*

